Aliases: C33:1M4(2), D6.(C32:C4), C32:2C8:3S3, C33:4C8:6C2, C3:Dic3.25D6, C33:5C4.2C4, C32:9(C8:S3), C3:1(C62.C4), (S3xC3xC6).2C4, C2.6(S3xC32:C4), C6.6(C2xC32:C4), (C3xC6).31(C4xS3), (C3xC32:2C8):6C2, (S3xC3:Dic3).4C2, (C32xC6).6(C2xC4), (C3xC3:Dic3).28C22, SmallGroup(432,572)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C32xC6 — C3xC3:Dic3 — S3xC3:Dic3 — C33:M4(2) |
Generators and relations for C33:M4(2)
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=ab-1, ae=ea, bc=cb, dbd-1=a-1b-1, be=eb, dcd-1=ece=c-1, ede=d5 >
Subgroups: 544 in 84 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2xC4, C32, C32, Dic3, C12, D6, C2xC6, M4(2), C3xS3, C3xC6, C3xC6, C3:C8, C24, C4xS3, C2xDic3, C33, C3xDic3, C3:Dic3, C3:Dic3, S3xC6, C62, C8:S3, S3xC32, C32xC6, C32:2C8, C32:2C8, S3xDic3, C2xC3:Dic3, C3xC3:Dic3, C33:5C4, S3xC3xC6, C62.C4, C3xC32:2C8, C33:4C8, S3xC3:Dic3, C33:M4(2)
Quotients: C1, C2, C4, C22, S3, C2xC4, D6, M4(2), C4xS3, C32:C4, C8:S3, C2xC32:C4, C62.C4, S3xC32:C4, C33:M4(2)
Character table of C33:M4(2)
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 8A | 8B | 8C | 8D | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 6 | 2 | 4 | 4 | 8 | 8 | 9 | 9 | 54 | 2 | 4 | 4 | 8 | 8 | 12 | 12 | 12 | 12 | 18 | 18 | 54 | 54 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | -i | i | -i | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | i | -i | i | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | -2i | 2i | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ12 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 1 | 1 | i | -i | -i | i | complex lifted from C4xS3 |
ρ13 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 1 | 1 | -i | i | i | -i | complex lifted from C4xS3 |
ρ14 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 2i | -2i | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ15 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 2i | -2i | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | complex lifted from C8:S3 |
ρ16 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | -2i | 2i | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | complex lifted from C8:S3 |
ρ17 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 2i | -2i | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | complex lifted from C8:S3 |
ρ18 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | -2i | 2i | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | complex lifted from C8:S3 |
ρ19 | 4 | 4 | -4 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 4 | -2 | 1 | 1 | -2 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xC32:C4 |
ρ20 | 4 | 4 | 4 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 4 | 1 | -2 | -2 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32:C4 |
ρ21 | 4 | 4 | 4 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 4 | -2 | 1 | 1 | -2 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32:C4 |
ρ22 | 4 | 4 | -4 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 4 | 1 | -2 | -2 | 1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xC32:C4 |
ρ23 | 4 | -4 | 0 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | -4 | 2 | -1 | -1 | 2 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C62.C4, Schur index 2 |
ρ24 | 4 | -4 | 0 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | -4 | -1 | 2 | 2 | -1 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C62.C4, Schur index 2 |
ρ25 | 4 | -4 | 0 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | -4 | 2 | -1 | -1 | 2 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C62.C4, Schur index 2 |
ρ26 | 4 | -4 | 0 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | -4 | -1 | 2 | 2 | -1 | 0 | 0 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C62.C4, Schur index 2 |
ρ27 | 8 | 8 | 0 | -4 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | -4 | -4 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xC32:C4 |
ρ28 | 8 | 8 | 0 | -4 | -4 | 2 | -1 | 2 | 0 | 0 | 0 | -4 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xC32:C4 |
ρ29 | 8 | -8 | 0 | -4 | -4 | 2 | -1 | 2 | 0 | 0 | 0 | 4 | -2 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ30 | 8 | -8 | 0 | -4 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | 4 | 4 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 38 45)(2 39 46)(3 47 40)(4 48 33)(5 34 41)(6 35 42)(7 43 36)(8 44 37)(9 28 23)(10 24 29)(11 17 30)(12 31 18)(13 32 19)(14 20 25)(15 21 26)(16 27 22)
(2 46 39)(4 33 48)(6 42 35)(8 37 44)(9 23 28)(11 30 17)(13 19 32)(15 26 21)
(1 45 38)(2 39 46)(3 47 40)(4 33 48)(5 41 34)(6 35 42)(7 43 36)(8 37 44)(9 23 28)(10 29 24)(11 17 30)(12 31 18)(13 19 32)(14 25 20)(15 21 26)(16 27 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 22)(2 19)(3 24)(4 21)(5 18)(6 23)(7 20)(8 17)(9 35)(10 40)(11 37)(12 34)(13 39)(14 36)(15 33)(16 38)(25 43)(26 48)(27 45)(28 42)(29 47)(30 44)(31 41)(32 46)
G:=sub<Sym(48)| (1,38,45)(2,39,46)(3,47,40)(4,48,33)(5,34,41)(6,35,42)(7,43,36)(8,44,37)(9,28,23)(10,24,29)(11,17,30)(12,31,18)(13,32,19)(14,20,25)(15,21,26)(16,27,22), (2,46,39)(4,33,48)(6,42,35)(8,37,44)(9,23,28)(11,30,17)(13,19,32)(15,26,21), (1,45,38)(2,39,46)(3,47,40)(4,33,48)(5,41,34)(6,35,42)(7,43,36)(8,37,44)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,35)(10,40)(11,37)(12,34)(13,39)(14,36)(15,33)(16,38)(25,43)(26,48)(27,45)(28,42)(29,47)(30,44)(31,41)(32,46)>;
G:=Group( (1,38,45)(2,39,46)(3,47,40)(4,48,33)(5,34,41)(6,35,42)(7,43,36)(8,44,37)(9,28,23)(10,24,29)(11,17,30)(12,31,18)(13,32,19)(14,20,25)(15,21,26)(16,27,22), (2,46,39)(4,33,48)(6,42,35)(8,37,44)(9,23,28)(11,30,17)(13,19,32)(15,26,21), (1,45,38)(2,39,46)(3,47,40)(4,33,48)(5,41,34)(6,35,42)(7,43,36)(8,37,44)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,35)(10,40)(11,37)(12,34)(13,39)(14,36)(15,33)(16,38)(25,43)(26,48)(27,45)(28,42)(29,47)(30,44)(31,41)(32,46) );
G=PermutationGroup([[(1,38,45),(2,39,46),(3,47,40),(4,48,33),(5,34,41),(6,35,42),(7,43,36),(8,44,37),(9,28,23),(10,24,29),(11,17,30),(12,31,18),(13,32,19),(14,20,25),(15,21,26),(16,27,22)], [(2,46,39),(4,33,48),(6,42,35),(8,37,44),(9,23,28),(11,30,17),(13,19,32),(15,26,21)], [(1,45,38),(2,39,46),(3,47,40),(4,33,48),(5,41,34),(6,35,42),(7,43,36),(8,37,44),(9,23,28),(10,29,24),(11,17,30),(12,31,18),(13,19,32),(14,25,20),(15,21,26),(16,27,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,22),(2,19),(3,24),(4,21),(5,18),(6,23),(7,20),(8,17),(9,35),(10,40),(11,37),(12,34),(13,39),(14,36),(15,33),(16,38),(25,43),(26,48),(27,45),(28,42),(29,47),(30,44),(31,41),(32,46)]])
Matrix representation of C33:M4(2) ►in GL6(F73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 72 | 0 |
0 | 0 | 0 | 72 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
25 | 7 | 0 | 0 | 0 | 0 |
32 | 48 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
29 | 25 | 0 | 0 | 0 | 0 |
54 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,1,0,0,0,0,72,0,72,0,0,72,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,72,1,0,0,72,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[25,32,0,0,0,0,7,48,0,0,0,0,0,0,72,0,1,0,0,0,0,0,72,0,0,0,0,1,0,1,0,0,0,0,0,1],[29,54,0,0,0,0,25,44,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C33:M4(2) in GAP, Magma, Sage, TeX
C_3^3\rtimes M_4(2)
% in TeX
G:=Group("C3^3:M4(2)");
// GroupNames label
G:=SmallGroup(432,572);
// by ID
G=gap.SmallGroup(432,572);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,141,36,58,1411,298,1356,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,a*e=e*a,b*c=c*b,d*b*d^-1=a^-1*b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^5>;
// generators/relations
Export